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Systems Biology and Location

Proteomics

All systems biology must be data driven

Key to progress

= Identification of aspect that needs to be analyzed “ome-wide”
= development of assays and automated analysis approaches

Systems biology needs
systematic information on high-
resolution subcellular location

= Eventually, for every expressed
protein for all cell types under all
conditions
Providing this information is the

goal of Location Proteomics
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1 Automated Interpretation

= Traditional analysis of fluorescence
microscope images has occurred by
visual Inspection

= Our goal over the past ten years has to
been automate the interpretation, to
yield better
= ODbjectivity
= Sensitivity

= Reproducibility
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A. Supervised Learning of
High-Resolution Subcellular

! | ocation Patterns
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‘ The Challenge

= Direct comparison of cell patterns to
Known examples does not work
pecause different cells have different
shapes, sizes, orientations

s Organelles/structures within cells are
not found in fixed locations

= Instead, we describe each image
numerically and compare the
descriptors
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Feature-based, Supervised

i learning approach

1. Create sets of images showing the location of
many different proteins (each set defines one
class of pattern)

2. Reduce each image to a set of numerical
values (“features”) that are insensitive to
position and rotation of the cell

3. Use statistical classification methods to
“learn” how to distinguish each class using
the features
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Boland & Murphy 2001
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i Evaluating Classifiers

Divide ~100 images for each class into training
set and test set

Use the training set to determine rules for the
classes

Use the test set to evaluate performance

Repeat with different division into training and
test

Evaluate different sets of features chosen as
most discriminative by feature selection methods

Evaluate different classifiers
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Murphy et al 2000;
Boland & Murphy 2001;
Huang & Murphy 2004

2D Classification Results

True Output of the Classifier

Class "'oNA | ER | Gia | Gpp | Lam | Mit | Nuc | Act | TfR | Tub
DNA | 99 | 1 0 0 0 0 0 0 0 0
ER | 0 | 97 | 0 0 0 2 0 0 0 1
Gia | O 0o | 91 | 7 0 0 0 0 2 0
Gpp | O 0 | 14 | 82 | o 0 2 0 1 0
Lam | O 0 1 o | 88 | 1 0 0o | 10 | 0
Mit | O 3 0 0 o | 92 | o 0 3
Nuc | 0 0 0 0 0 0 | 99 | O 0
Act | O 0 0 0 0 0 0 | 100 0
TR | O 1 0 0o | 12 | 2 0 1 | 81 | 2
Tub | 1 2 0 0 0 1 0 0 1 | 95
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Overall accuracy = 92%




Murphy et al 2003

Human Classification Results

True

Output of the Classifier

Class "oNA T ER | Gia | Gpp | Lam | Mit | Nuc | Act | TfR | Tub
DNA | 100 | © 0 0 0 0 0 0 0 0
ER | 0 | 90 | 0 0 3 6 0 0 0 0
Gia | 0 0 | 56 | 36 | 3 3 0 0 0 0
Gpp | O 0 | 54 | 33 | 0 0 0 0 3 0
Lam | O 0 6 o | 73| o 0 0o | 20| o
Mit | 0 3 0 0 0o | 96 | o 0 0 3
Nuc | O 0 0 0 0 0 | 100]| o 0 0
Act | 0 0 0 0 0 0 o |100]| o 0
TR | 0 | 13 | © 0 3 0 0 0o | 83| o
Tub | 0 3 0 0 0 0 0 3 0 | 93
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Overall accuracy = 83%




Computer vs. Human
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Velliste & Murphy 2002;
Chen & Murphy 2004

3D Classification Results

Output of the Classifier

< DNA| ER | Gia | Gpp | Lam | Mit | Nuc | Act | TfR | Tub
DNA | 98 2 0 0 0 0 0 0 0 0
ER 0 100 0 0 0 0 0 0 0 0
Gia 0 0 100 0 0 0 0 0 0 0
Gpp 0 0 0 96 4 0 0 0 0 0
Lam 0 0 0 4 95 0 0 0 0 2
Mit 0 0 2 0 0 96 0 2 0 0
Nuc 0 0 0 0 0 0 100 0 0 0
Act 0 0 0 0 0 0 0 100 0 0
TR 0 0 0 0 2 0 0 0 96 2
Tub 0 2 0 0 0 0 0 0 0 98

Carnegie Mellon

Overall accuracy = 98%




B. Unsupervised Learning to
ldentify High-Resolution

! Protein Patterns
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Location Proteomics

= [ag many proteins

= We have used CD-tagging

(developed by Jonathan Jarvik and

Peter Berget): Infect population of

cells with a retrovirus carrying DNA

_ sequence that will “tag” in a random gene

Jarvik  solate separate clones, each of which produces express one
etal  {35ged protein
2002 - Use RT-PCR to identify tagged gene in each clone

= Collect many live cell images for each clone using spinning
disk confocal fluorescence microscopy
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Chen et al 2003;
Chen and Murphy 2005
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s SLF features can be used to measure
similarity of protein patterns

= This allows us for the first time to create a
. systematic, objective, framework for
® describing subcellular locations: a
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C. The Protein Subcellular
Location Image Database

! (PSLID)
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Huang et al 2002; Huang et al 2006

PSLID: Protein

1 Subcellular Location Image Database

= A publicly accessible image database at
http://murphylab.web.cmu.edu/services/PSLID

= A downloadable open source database system
for creating local databases
= Focused on subcellular pattern analysis

= Subcellular Location Features integrated into
database

= Integrated comparison, classification, clustering tools
= Designed for high-throughput microscopy
= Interface to OME in the works

CarnecieMello@rge ITR project with UCSB for distributed system




~1000 2
~1500 3
~2500 3
~1000 4

i PSLID contents

D Images of 10
D Images of 23
D images of 90

D Images of 32

More being added

Carnegie Mellon
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QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.




QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.




D. Image Content-based
Retrieval and Interpretation of
Micrographs from On-line

! Journal Articles

The Subcellular Location Image
Flnder (SLIF)

Carnegle Mellon




ODbjectives of SLIF

s EXxtract structured assertions from
unstructured Internet sources.

= Develop text and image processing methods
to identify specific data that supports
relevant assertions.

= Apply data mining methods to assertion
knowledge bases to develop new
hypotheses, form consensus conclusions,

and distinguish differing conditions.
Carnegie Mellon




Overview: Image processing in SLIF

g Ay
U2B"-GFP anti-coilin AB
i Nl

Into
“panels’

Detect & remove
annotations -

\B y {2B"-GFP . . anti-U2B" AB
e % .
..

Classify
panels
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(A) U2B"-GFP hanti-coi""ﬂﬂ Overview: Text Processing
In SLIF

 Find entity names in text, and panel
labels in text and the image.

-+ anti-U2B" AB » Match panels labels in text to panel
labels on the image.

» Associate entity names to textual
panel labels using scoping rules.

Figure : onfog ical section of BY-2 cells exgressing*N2B 0-
GFP, douk @0 panel) and autoantibody agairt p80 coil}
(right panel). Three nucler are shown, and the bright GFP spots cole e with
bright foci of anti-coilin labeling. There is some labeling of the cytop by anti-
P80 coilin. (B) Single confocal optical section of BY-2 cells expressingU2B O -
GFP, double labeled with GFP (left panel) and 4G3 antibody (right panel). Three
nuclei are shown. Most coiled bodies are in the nucleoplasm, but occasionally
are seen in the nucleolus (arrows). All coiled bodies that contain U2B 0 also
express the U2B 0-GFP fusion. Bars, 5 um.

Carnegie Mellon
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QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.



‘ SLIF programmatic interface

= http://slif.cbi.cmu.edu/search.jsp?arguments
= protein=<protein name>
= level=figure OR level=panel
= type=FMI

= pixel_size lo=<lower bound>

= pixel_size hi=<upper bound>

= location=<subcellular location>

Carnegie Mellon




E. Preliminary Automated
Analysis of Images from the

! Human Protein Atlas

- RS LS
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Human Protein Atlas

0 = ‘:..; |ﬁ http: /fproteinatias. org)tissue_profile, phprantibody_id=1949 % | Qo

about the project about protein atlas tissue dictionary dizclaimer submis=ion of antibodies

CASK tissue profiles. Validation score: N/A

Gene data Havigation

Home

De=cription: Peripheral plasma membrane protein CASK (EC 2.7.1.-) (hCASK) (Calcium/calmodulin-dependent
zerine protein kinase} (Lin-2 homolog). |
Source: 014936 (Unigprot) CAB00 1949

Search result

Chramosome: Xip11.4
EnzEMBL IIv ENSGOOO0OD1 47044 | Tissue prafiles
: ] ) ) ) L Antibody info
Protein Enzembl ID Tran=cript Enzembl 10 Mo of aa Pl Signal Peptide  Th Region(=)
Zplice varizant 1. ENSPOOD0D0D354641 ENSTOODD0361962 921 105 kDa Ho Ho
Splice variant 2 ENSPOOD0D0322727 ENSTOODD0318588 921 105 kDa Ho Ho
Splice variznt 3 ENSPO0DD0OD347218 ENSTOO0ODD355101 a7 102 kDa Ho Ho m
] — 14—
Hormal Tissues 2 u— 13 s
Adrenal gland cortical cellz Lung alveolar cells 3 T 1? :
medullar cells macrophages D —— 15—
Appendix glandular cells Lymph node follicle cells (cortex) ? i ég ]
Iymphoid tizzue non-follicle cells (paracartex) O — 21 -
Bone marrow bane marrovy poetic cells Hasopharynx surface epithelial cells ER i 22 e
Breast glandular cels Oral mucosa surface epithelial cells ﬁ' i K —
Bronchus surface epithelial cells Ovary fallicle cells 17— i
Cerebellum cels in granular layer avarian stromal cells 17—
cellz in molecular layer Pancreas exXacrine pancreas
purkinie cells izlet cells
Cerebral cortex neuronal cells Parathyroid gland dlandular cells
nan-neuronal cells Placenta decidual cells
Cervix, uterine glandular cells trophoblastic cells v
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Human Protein Atlas

om =p %__; |ﬂ' htkp: ffproteinatlas . org/normal_unit. phprantibody_id=194928mainannokation_id=202310 % | G0

about the project about protein atlas tizssue dictionary disclaimer submission of antibodies

Adrenal gland [CASK]
Intensity Localization

Cortical cells moderste =75% cytoplazmic andfor membranous Hor
Medullar cells -- cell type not present --

et o, e 1
- 2
3

4

=1

g

-

i g

El

10

Male, age 35 | Female, age 44 | Female, age 71 1;

Arown color ihdicates preaence of proteln, bige cofor shows celf puclel. Image Usage Policy 13
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Human Protein Atlas
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1 ISsues

s ~700 antibodies on ~20 tissues

= Staining: DAB immunohistochemistry (for
specific protein) and hematoxylin (for DNA)

= Color unmixing needed to extract separate
Images of protein and DNA distributions

= Images collected at low resolution (20x) - how
well can subcellular patterns be
distinguished?

Carnegie Mellon




i Initial Analysis

= Try some color unmixing methods
=« Linear unmixing
= Non-negative matrix factorization

= Try training classifiers to recognize
patterns for five test proteins

Carnegie Mellon







Dataset

S

= 5 protein classes
= Actin (cytoskeletal)
= SNRP (nuclear)
=« TfR (lysosomal)
= Thioredoxin (mitochondrial)
= Tubulin (cytoskeletal)

= Various (~10) tissue types for each class
(ovary, liver, breast, skin, muscle, etc.)

= 1 field for each tissue/protein pair

Carnegie Mellon




Dataset

:

= Each field split into smaller 300x300
pixel Images

= Regions with less that 40% pixels above
background are removed

= A field gives 30-75 useable regions,
usually 60

Carnegie Mellon




Classification Results —Across Tissues

assumed initial W

Classified as Classified as
ArC]“ S':R TR | Thio Tulb“ Actin | SNRP | TfR | Thio | Tubul
Actin | 36 o] 8 13 | 34 Actin | 36 9 8 13 34
(7)) (7))
(7)) (7))
S |swrP| 5 | 81| 2| 7| 6 SfsneP| 5 | 81 | 2 | 7 6
(b} (D]
> -
= TR 3 ¥4 54 | 32 5 = TfR 3 4 54 | 32 5
Thio 6 9 V4 71 V4 Thio 6 9 V4 71 V4
Tubul | 15 6 13 8 57 Tubul | 15 6 13 8 57

Accuracy 61.5%

Carnegie Mellon

Accuracy 54.1%




1 Summary

= Automated tools for analyzing

subcellular patterns in fluorescence
mIcroscope images

= PSLID and SLIF databases for querying
results of automated analysis

= Preliminary work on automated analysis
of Immunochytochemistry images in
Human Protein Atlas

Carnegie Mellon




1 Future

s Build SLIF database for all of Pubmed Central
and Biomed Central

= Additional datasets being added to PSLID
= SOAP interfaces to SLIF and PSLID in works

= Continue work on analysis of Human Protein
Atlas

= Provide generative models for each location
family

Carnegie Mellon
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